find the point equidistant fr. (-6,-1) & (-1,2) & at a distance 5 fr. (-2,7)?
Favorite Answer
((-6-1)/2, (2-1)/2)
= (-7/2,1/2).
The gradient of line AB is:
(2 – (-1)) / (-1 -(-6))
= 3 / 5.
The gradient of the perpendicular bisector of AB is therefore:
-5/3.
The equation of the perpendicular bisector is:
y – 1/2 = (-5/3)(x – (-7/2))
y – 1/2 = -5x/3 – 35/6
y = -5x/3 – 16/3 ……….(1)
The distance of a point (x,y) from (-2,7) is:
sqrt((x – (-2))^2 + (y – 7)^2)
= sqrt(x + 2)^2 + (y – 7))^2.
The requirement for the distance to be 5 is:
(x + 2)^2 + (y – 7)^2 = 25 ………(2)
The point must also satisfy (1).
Substitute for y from (1) in (2):
(x + 2)^2 + ( -5x/3 – 16/3 – 7 )^2 = 25
(x + 2)^2 + ( -5x/3 – 37/3 )^2 = 25
9(x + 2)^2 + ( -5x – 37 )^2 = 225
9x^2 + 36x + 18 + 25x^2 + 1369 + 370x = 225
34x^2 + 406x + 1162 = 0
17x^2 + 203x + 581 = 0
x = ( -203 +/- sqrt(203^2 – 4*17*581 ) / 34
= ( – 203 +/- sqrt(1701) ) / 34
Substituting these two values of x in turn in (1) gives the corresponding y co-ordinates:
y = -5(( – 203 +/- sqrt(1701) ) / 34 ) / 3 – 16/3
= -(5/102)( – 203 +/- sqrt(1701) ) – 16/3
= -(1/102)( – 1559 +/- 5sqrt(1701) ).